MATH_ERROR
Section: Linux Programmer's Manual (7)
Updated: 20170915
Index
Return to Main Contents
NAME
math_error  detecting errors from mathematical functions
SYNOPSIS
#include <math.h>
#include <errno.h>
#include <fenv.h>
DESCRIPTION
When an error occurs,
most library functions indicate this fact by returning a special value
(e.g., 1 or NULL).
Because they typically return a floatingpoint number,
the mathematical functions declared in
<math.h>
indicate an error using other mechanisms.
There are two errorreporting mechanisms:
the older one sets
errno;
the newer one uses the floatingpoint exception mechanism (the use of
feclearexcept(3)
and
fetestexcept(3),
as outlined below)
described in
fenv(3).
A portable program that needs to check for an error from a mathematical
function should set
errno
to zero, and make the following call
feclearexcept(FE_ALL_EXCEPT);
before calling a mathematical function.
Upon return from the mathematical function, if
errno
is nonzero, or the following call (see
fenv(3))
returns nonzero
fetestexcept(FE_INVALID  FE_DIVBYZERO  FE_OVERFLOW 
FE_UNDERFLOW);
then an error occurred in the mathematical function.
The error conditions that can occur for mathematical functions
are described below.
Domain error
A
domain error
occurs when a mathematical function is supplied with an argument whose
value falls outside the domain for which the function
is defined (e.g., giving a negative argument to
log(3)).
When a domain error occurs,
math functions commonly return a NaN
(though some functions return a different value in this case);
errno
is set to
EDOM,
and an "invalid"
(FE_INVALID)
floatingpoint exception is raised.
Pole error
A
pole error
occurs when the mathematical result of a function is an exact infinity
(e.g., the logarithm of 0 is negative infinity).
When a pole error occurs,
the function returns the (signed) value
HUGE_VAL,
HUGE_VALF,
or
HUGE_VALL,
depending on whether the function result type is
double,
float,
or
long double.
The sign of the result is that which is mathematically correct for
the function.
errno
is set to
ERANGE,
and a "dividebyzero"
(FE_DIVBYZERO)
floatingpoint exception is raised.
Range error
A
range error
occurs when the magnitude of the function result means that it
cannot be represented in the result type of the function.
The return value of the function depends on whether the range error
was an overflow or an underflow.
A floating result
overflows
if the result is finite,
but is too large to represented in the result type.
When an overflow occurs,
the function returns the value
HUGE_VAL,
HUGE_VALF,
or
HUGE_VALL,
depending on whether the function result type is
double,
float,
or
long double.
errno
is set to
ERANGE,
and an "overflow"
(FE_OVERFLOW)
floatingpoint exception is raised.
A floating result
underflows
if the result is too small to be represented in the result type.
If an underflow occurs,
a mathematical function typically returns 0.0
(C99 says a function shall return "an implementationdefined value
whose magnitude is no greater than the smallest normalized
positive number in the specified type").
errno
may be set to
ERANGE,
and an "overflow"
(FE_UNDERFLOW)
floatingpoint exception may be raised.
Some functions deliver a range error if the supplied argument value,
or the correct function result, would be
subnormal.
A subnormal value is one that is nonzero,
but with a magnitude that is so small that
it can't be presented in normalized form
(i.e., with a 1 in the most significant bit of the significand).
The representation of a subnormal number will contain one
or more leading zeros in the significand.
NOTES
The
math_errhandling
identifier specified by C99 and POSIX.1 is not supported by glibc.
This identifier is supposed to indicate which of the two
errornotification mechanisms
(errno,
exceptions retrievable via
fettestexcept(3))
is in use.
The standards require that at least one be in use,
but permit both to be available.
The current (version 2.8) situation under glibc is messy.
Most (but not all) functions raise exceptions on errors.
Some also set
errno.
A few functions set
errno,
but don't raise an exception.
A very few functions do neither.
See the individual manual pages for details.
To avoid the complexities of using
errno
and
fetestexcept(3)
for error checking,
it is often advised that one should instead check for bad argument
values before each call.
For example, the following code ensures that
log(3)'s
argument is not a NaN and is not zero (a pole error) or
less than zero (a domain error):
double x, r;
if (isnan(x)  islessequal(x, 0)) {
/* Deal with NaN / pole error / domain error */
}
r = log(x);
The discussion on this page does not apply to the complex
mathematical functions (i.e., those declared by
<complex.h>),
which in general are not required to return errors by C99
and POSIX.1.
The
gcc(1)
fnomatherrno
option causes the executable to employ implementations of some
mathematical functions that are faster than the standard
implementations, but do not set
errno
on error.
(The
gcc(1)
ffastmath
option also enables
fnomatherrno.)
An error can still be tested for using
fetestexcept(3).
SEE ALSO
gcc(1),
errno(3),
fenv(3),
fpclassify(3),
INFINITY(3),
isgreater(3),
matherr(3),
nan(3)
info libc
COLOPHON
This page is part of release 4.15 of the Linux
manpages
project.
A description of the project,
information about reporting bugs,
and the latest version of this page,
can be found at
https://www.kernel.org/doc/manpages/.
Index
 NAME

 SYNOPSIS

 DESCRIPTION

 Domain error

 Pole error

 Range error

 NOTES

 SEE ALSO

 COLOPHON

This document was created by
man2html,
using the manual pages.
Time: 23:51:03 GMT, September 24, 2018